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Thermal dispersion in a porous medium
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Abstract—The thermal dispersion conductivity tensor for convection in a porous medium is derived based
on the method of volume averaging of the velocity and temperature deviations in the pores. The velocity
and temperature deviations are obtained based on flow over a dilute array of spheres, incorporated with
a scale analysis. A multiplying constant (i.e. the thermal dispersivity tensor) is introduced to account for
the interaction of spheres. Separate considerations are given to the creeping flow at low Reynolds numbers,
as well as boundary layer flow and wakes at high Reynolds numbers. It is found that the velocity and
porosity dependencies in the thermal dispersion conductivity tensor are different for high Reynolds number
and low Reynolds number porous media flows. The value of the transverse thermal dispersivity for a
nearly parallel flow at high Reynolds numbers is determined by comparing the predicted heat transfer
characteristics with existing experimental results for forced convection of water and air through heated
packed channels and cylindrical packed tubes.

INTRODUCTION

IT HAs been well established in the chemical engin-
eering literature that thermal dispersion effects play
an important role on forced convection in porous
media {I-5]. Experiments on forced convection in
packed columns have shown that the average radial
or transverse thermal dispersion conductivity at high
Reynolds numbers can be correlated as a linear func-
tion of Reynolds number [1-5], i.e.

(k"l')av/kl' = C‘T Pem (l)

where (k7),, is the cross-sectional average of the radial
thermal dispersion conductivity ; k; the stagnant ther-
mal conductivity of the fluid; C;r = 0.09 ~ 0.1 [4, 5];
Pe,, the Peclet number defined as Pe, = Re, Pr; =
Undy/a; (With Pre = ve/a; being the Prandtl number
of the fluid and Re, the Reynolds number based
on the particle diameter d, and the mean velocity u,,).
From early experiments [1, 2, 5], it has been observed
that steep radial temperature gradients exist near the
heated or cooled wall in the packed columns. These
steep temperature gradients were attributed to the
channeling effect in early work [6].

In a series of papers, Cheng et al. [7-14] have
analyzed the phenomena of steep temperature gradi-
ents in forced convection in a packed column by tak-
ing into consideration the effects of thermal disper-
sion, variable porosity, and nonuniform velocity
distribution. In their analyses, the porosity dis-
tribution is approximated by an exponential function
of the form [15]

¢ = ¢[1+C, exp (—N,y/d,)] @

where y is the distance from the wall; d, the particle
diameter, ¢, = 0.4 the porosity of the bed away from
the wall; N, =2 and C, =1 are the empirical con-
stants used in most of the early work [7-12, 15-17],
while the values of N, =5~ 6 and C, = | were used in
more recent work [12-14, 18]. Based on the cor-
relation given by equation (1), Cheng et al. [7-14]}
assumed that the local transverse thermal dispersion
conductivity k7 is

k/ke = Dy Pewnl(u/um) )

where the factor u/u,, is introduced to account for
the local velocity variation. In equation (3) / is a
dimensionless dispersive length (normalized with
respect to d,) which was represented by a two-layer
model (7, 8] inearly work and ismodeled as the Van Driest
type of wall function in more recent work [9-13]. The
Van Driest type of wall function is given by

I =1—exp[—y/od,) @

where w is an empirical constant. Cheng et al. {7, 10]
found that without the wall function in equation (3)
the observed steep radial temperature gradients from
experiments cannot be reproduced in theory. This
implies that the channeling effect alone is not respon-
sible for the observed temperature gradient behavior.
The empirical constant Dy in equation (3) and @ in
equation (4) were obtained by comparing the pre-
dicted heat transfer characteristics with experimental
data. Thus, the values of D; and w depend on the
values of ¥, and C, used in equation (2). The fol-
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Cp,  drag coefficient defined in equation (23a)
Cr constant defined in equation (1)
D thermal dispersivity tensor

D" drag force for the nth sphere

D+ constant defined in equation (3)

d, particle diameter

F mertial coefficient

f dimensionless vector function defined in
equation (50)

F dimensionless vector function defined in
equation (57)

g dimensionless vector function defined in
equation (22)

g dimensionless vector function defined in
equation (52)

G dimensionless vector function defined in
equation (25)

G’ dimensionless vector function defined in

equation (56)
H half width of a packed channel
unit vectors in the x-, y- and z-directions
K permeability
kg stagnant thermal conductivity of the fluid
saturated porous medium
ke thermal conductivity of the fluid phase

k, radial thermal dispersion conductivity of
the packed column

k, thermal conductivity of the solid phase

ks local radial thermal dispersion
conductivity

{ wall function or dispersive length

n outward unit vector of a surface

N number of spheres in an elementary
volume

NOMENCLATURE

A area of fluid-solid interface N, constant defined in equation (2)
a,b  Ergun’s constants p pressure
B body force per unit volume Pe,,  Peclet number defined in equation (1)
C, specific heat at constant pressure Pr;  Prandt! number of the fluid phase
Co» Cor Co  constants defined in equations (26) r radial coordinate

and (28) ry radius of a packed column
¢y constant defined in equation (26) R radius of a sphere
C, constant defined in equation (2) Re;, local Reynolds number based on particle

diameter and the local average pore
velocity

Re, Reynolds number based on particle
diameter and the mean velocity

S surface

T temperature

{ time

U mean velocity in a packed column

Vv elementary volume

r velocity

W any physical quantity
X,y o rectangular coordinates.

Greek symbols

% thermal diffusivity
i dynamic viscosity of the fluid phase
kinematic viscosity of the fluid phase

)

p density

¢ porosity of the packed bed

o dimensionless constant defined in
equation (4).

Subscripts
av average quantity

f quantity associated with the fluid phase
s quantity associated with the solid phase
% quantity associated with the x-phase
B quantity associated with the f-phase
e quantity at infinity.

Superscripts
* dimensionless quantity

spatial average quantity
deviation quantity.

lowing values of Dt and w were obtained for the best
match between theory and experiments {9-13] :

(i) Dr=017and w=15if Ny=2and C, =1,
and
(i) Dr=0.12andw = 10if Ny =5and C, = 1.4.

Although theoretical results based on this ad hoc
approach (i.e. equations (3) and (4)) agree with a
number of experimental results, the approach lacks a
rigorous mathematical basis, and is therefore subject
to criticism.

In this paper, the thermal dispersion conductivity

tensor for porous media flow is derived more rigor-
ously from a volume averaging of the velocity and tem-
perature deviations in the pores. The closure schemes
for the thermal dispersion conductivity tensor are
obtained based on the model of flow over a dilute
random array of spheres. Explicit expressions of the
thermal dispersion conductivities (within a mul-
tiplying constant) for high and low Reynolds number
flows are obtained in terms of the Peclet number and
a factor taking into consideration the local porosity
variation in an approximate manner. The value of
the transverse thermal dispersivity for high Reynolds
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number flows is obtained by comparing the predicted
heat transfer characteristics with existing exper-
imental data for forced convection of air (Pr = 0.7)
through an annular [5] and a cylindrical packed
column under constant heat flux [3] or constant
wall temperature [19] conditions. The approach was
also applied to the problems of thermally developing
forced convection of water (Pr=5.5) through a
packed channel where experimental data is available
[20].

THE METHOD OF VOLUME AVERAGING

The macroscopic conservation equations for con-
vective heat transfer in a porous medium can be
obtained by a volume averaging of the microscopic
conservation equations over a representative volume
[21-26]. In this section, a brief discussion of the vol-
ume averaging process will be presented.

Consider a representative volume V in a porous
medium consisting of an a-phase and a f-phase. If W,
is a quantity associated with the a-phase, an intrinsic
phase average of W, is defined as [21, 22]

.1
W, =7L W, dv (5)

x

where the volumetric integration is to be carried out
over dV =dx dy dz’ with (x’, y’, ') denoting the
microscopic coordinates. In equation (5) V, is the
volume occupied by the ax-phase in V, and
V,+Vy =V, with ¥ being the volume occupied by
the f-phase in V.

To derive the macroscopic equations from the
microscopic equations, the following averaging the-
orems similar to those obtained by Whitaker [21] and
Slattery [22] relating the volume average of a spatial
derivative to the spatial derivative of the volume aver-
age are needed :

1 1 1
T,LVW,dV=V|:[—/L W,dV]+,—/J;MW,dS

(62)

W,-dS

A

1 1 1
T/J;;V'w,dV= V'[I_/J;’w’dy:l-'-?/

(6b)

where A, is the interface between the x- and f-phase
in ¥, dS is a surface vector, and W, and W, are a
scalar and a vector, respectively. In equation (6), we
differ from the previous work [21, 22] by dis-
tinguishing the gradient operators in the microscopic
(x’, ¥, ) and macroscopic coordinates (x, y, z) by V
and ¥ which are defined as
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V=I(‘,‘ij+"6}"+k52—' (7a)
Y

Equation (6) can easily be obtained by applying the
gradient and divergence theorems to a representative
control volume V.

THE MACROSCOPIC CONTINUITY
EQUATIONS

The microscopic continuity equation for an incom-
pressible flow is given by

V'Vr=0 (8)

where v;is the microscopic velocity vector. Integrating
equation (8) with respect to a representative volume
in a porous medium, dividing the resulting expression
by V and with the aid of equation (6b) yields

V- (¢7) =0 (%a)

where ¢ = V/V is the porosity while ¥; is the volu-
metric average (macroscopic) velocity vector. Equa-
tion (9a) can be rewritten as

V- =0 (9b)

where v = ¢¥, is the Darcy velocity vector.

THE MACROSCOPIC MOMENTUM
EQUATION

The microscopic momentum equation for an
incompressible flow in a porous medium is given by
the Navier-Stokes equation

av .
Pr [5—; +V- (Vr"r)] = —Vp+u Vv (10)

where p; and g, are the density and viscosity of the
fluid while p; is the pressure of the fluid. Integrating
the above equation with respect to a representative
volume and with the aid of equation (6) gives

Pr [é (o7 +V- (dﬁrvr)] = —V(¢p) +uV(¢¥) +B

(11a)

where

! Fe .
B=— V‘['ﬁprdS+—I;L;(va) dS (11b)

which is the total drag force per unit volume (body
force) due to the presence of the solid particles.

We now decompose the microscopic velocity vector
v into the sum of the intrinsic phase average (macro-
scopic) velocity vector v and a deviation velocity vec-
tor v; [23], i.e.
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(12)

Yy = ;’r'{' V}.
It can be shown that

VoV = ViVe+ Vv

(13)

Substituting equation (13) into equation (11a) gives
0. - - ;
Pe [‘é; (DY) +V - ($73) + V- (gviv ):I

= —V(op) + 1V (¢7) +B.

The second term on the left-hand side of equation
(14) represents the macroscopic inertia force which is
usually less important as compared to the terms on the
right-hand side of equation (14) where the pressure
gradient is balanced by the body force over the entire
porous media, except near the wall for which the
Brinkman’s frictional effect predominates. The third
term on the left-hand side of equation (14) represents
the hydrodynamic dispersion which is of higher order
as compared to the second term on the left-hand side
of equation (14), and can therefore be neglected. Thus,
equation (14), in terms of the Darcy velocity, reduces

(14

to
Yo (T = ~ Tt TvB (15
Pr E+ p = —=Vp+uV-v+ (15)
where p = ¢p;.

CLOSURE MODELING FOR THE DRAG
FORCE DUE TO SOLID PARTICLES

To obtain closures for the body force term B, we
now consider flow past a dilute random array of
spheres (i.e. spheres with negligible interaction) with
a macroscopic velocity vector v,. If the representative
volume ¥ contains N spheres of diameter d,, (or radius
R), equation (11b) becomes

B = ND®/V

Do = — J
P

represents the drag force on the nth sphere. In equa-
tion (17), p¥ and v{ are the local pressure and velocity
in the flow field around the nth sphere. The macro-
scopic pressure j; and velocity ¥, can now be regarded
as the ambient condition. With the quasi-steady state
assumption [26], the momentum equation for v{”
according to equation (10) is

(16)

where

o dS+;tfj v-dS  (17)

PV VIV = —Vpi" +u V. (18)

We now introduce the following dimensionless
variables:

v =v/|l%d, p*= " — B el il

(x*, y*,2*) = (X'/d,, ' /dy, ='[dy). (19)
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Equation (18), in terms of these dimensionless vari-
ables, becomes

l N
(VF Vvt = —Viprb o VRE (20)
Regy
where
sl f
\ lax* +j€y* +k6:*

is the dimensionless gradient operator. and Rey =
{¥dd,/v; is the Reynolds number based on particle
diameter and average pore velocity. The boundary
conditions for v are

v¥ =0 on the surface of the sphere  (21a)

and

v¥ = ¥/|V(| =1, away from the sphere (21b)

where i, is a unit vector in the ¥, direction.

DRAG FORCE FOR HIGH REYNOLDS
NUMBER FLOWS (Re,, » 10)

At high Reynolds number flow (Rey, » 10), there
exists a viscous boundary layer of O(Rej''?) at the
proximity of the spherical wall. Outside the viscous
boundary layer, the viscous terms are less important
and they represent a higher order correction to the
potential flow produced by the balance between the
advection and pressure terms. Solutions to equations
(20) and (8) subject to boundary conditions (21) at
high Reynolds number can be found in the open litera-
ture. In this study, it is sufficient to give a general
expression of the solution outside the boundary layer
in the polar coordinates (r*, 8) as

vt =g(r*,0) + O(Rej; %) (2

where g satisfies g(o0, 0) = i, and g(1/2, 8) = t(0) with
t being a vector tangential to the surface of the sphere.

To evaluate the drag force on the sphere, the bound-
ary layer solution to equations (20) and (21) is needed.
For this purpose, equation (20) will now be expressed
in terms of a new scale n* = (r*—1;2)Re/,*. The drag
force can then be obtained through a matched asymp-
totic expansion procedure [28] to give

5

d 5
D" = Cp ’ZE pedvel i (23a)

where

——=[cs+c| Regz' "+ O(Rei;")]. (23b)

67
C‘D R D2
The zero order term in equation (23b) is due to the
skin friction while the first order correction is due to
the form drag associated with the stagnation flow near

the leading edge.



Thermal dispersion in a porous medium

Drag force for low Reynolds number flows (Re;, < 10)

At low Reynolds numbers (Reg, « 10), the viscous
effect is significant for the entire flow field. The pres-
sure generated in a creeping flow depends not only on
the flow velocity but also on the viscosity. The proper
scale for pressure is ud¥]/d, and the dimensionless
pressure is given by pi* = (") ~Pody /¥ = p? Rey,.
Equation (20), in terms of thxs dimensionless pressure,
becomes

Reg (v -V¥)vr = —V*pi* 4 V*3v.  (24)

The solution to equation (24) for low Reynolds num-
ber flow can be expressed in the form

v = G(r*,0)+ O(Rey,)

where G(r*,8) satisfies the boundary condition
G(1/2,6) = 0. For low Reynolds number flow, the
drag force is contributed from both the pressure drag
and skin friction, and the result for the drag coefficient
is given by

29

6n
Cp, = —|[co+c, Reyy+O(Red)] (26)
Re,
where the zero order term is the Stokes drag and the
first order correction is Oseen’s correction associated
with the inertial terms in equation (24).

Composite expression for the drag force

From equation (26) it is observed that at low Reyn-
olds number flow, the drag coefficient is dominated
by 6mco/Re;, associated with the Stokes drag, and the
inertial force represents a first order correction which
is given by 6zc,. Equation (23) shows that as the
Reynolds number is increased, the skin friction of the
laminar boundary layer becomes dominant with a
drag coefficient of 6ncy/Rej;? and, at the same time,
the Stokes drag is degenerated to a stagnation form
drag near the leading edge of the sphere with
additional drag coefficient given by 6nc’/Re,. If the
Reynolds number is increased further, the flow is
expected to separate from the surface of the sphere to
form a wake. The drag force associated with the wake
is predominated by the inertial effect of the flow with
a constant drag coefficient, i.e.

Cp = bncy. 27

Combining equations (23), (26) and (27), we write the
drag coefficient as

Cp = 6n(co/Rey+co/Rel)* +c3). (28)

Substituting equations (23) and (28) into equation
(16) yields

18(1— .
B=— _d—“[co'f'co Reii? + ¢ Rerglucl¥ili,
p
(29a)
where we have used the geometric relation
4rR3N/3V = 1-¢. (29b)
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In equation (29a) ¢,, ¢y and cj are constants. Equation
(29b), with ¢, = a(l —¢)/18¢, ¢, = 0 and ¢} = b/18,
reduces to Ergun’s expression

F
B [mv oy ¢v|v|] (30)
\/K
where v=4¢¥, is the Darcy velocity, K=

¢°dlla(1 —¢)* and F = b/\/ap*?, with a and b being
the Ergun constants. It follows from equations (15)
and (30) that the macroscopic momentum equation
for an incompressible flow in a variable porosity
medium is

é . )
Pr [5; +V' (%):l = —V[)-l-;er‘V

wdv | Fvly]
-[Tw ] 31

f \/K
THE MACROSCOPIC ENERGY EQUATION

The microscopic energy equations for the fluid and
solid phases are

(pC, )r[ +V- (VrTr)] =V (kVT;) (32a)

and
(pC, )s =V (kVT,) (32b)
where the interface conditions are
Tr=T, onAg (33a)
0, kVT =n,-kVT, onA.. (33b)

With the aid of equation (6), a volume averaging of
equation (32) gives

é " _
E [¢(pC,)T1] + (PCp)rv “[¢v:T]

= V- kPG TII+P- [}, f

Ag

keT; dS]

1
+ ?/J‘ kVT; -dS (34a)
Ags

and

é -

1 1
-V [I—/Lﬁ kT, dS] - ?L“ &k VT,-dS (34b)

where (pC,); and (pC,), are the heat capacities of the
fluid and the solid phases; T; and 7, the fluid and
solid temperatures which are related to their intrinsic
phase temperatures T;and T, by
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Ti=—| T;dV
f Ve v, f
T, = L T.dV (35
s Vs.,V; s . )
The quantity v.T; in equation (34a) is defined as
— 1
vT;=—1 vT;dV. (36)
fJVe

Adding equations (34a) and (34b) and with the aid of
boundary condition (33b) yields

¢ - -

+(pC) V- [ov T = V- {kV(oT))

+kV[(1-PT]} +V- [IL/J (ke T —k,T)) dS:l .

37
We now decompose T; and T, as [26]
T, =T+T;
T,=T+T, (38)

At this point, we make use of the local thermal equi-
librium assumption [26], i.e.

Li=T,=T. (39)
Substituting equations (13) and (38) into equation
(37) and with the aid of equation (39) leads to

<[B(pC)i+ (1= D) (pC)IT

+(pC V- [0 T+viTo)l = V[ke+ (1~ PkIT

= |1
+V'[T/J (ka;—ksT;)dS] (40a)
Ay,
where

— 1
VT = ——j viT;dV (40b)
Ve Jve

represents the thermal dispersion effect. Nozad et al.
[25] showed that the terms on the right-hand side of

equation (40b) can be closed by

Plok (1ot 0| 1 [ ey

—kT9) dS] =V VT @1

where k, is the stagnant thermal conductivity of the
saturated porous medium. Equation (40a), with equa-
tion (41), reads

-

162G+ (1=9)pC)IT+(CY

[(p@ET+viTHl = V- (k,VT) (42)

C. T. Hsu and P. CHENG

which is the macroscopic energy equation for con-
vection in a porous medium.

CLOSURE MODELING FOR THERMAL
DISPERSION

We now discuss the closure modeling for thermal
dispersion given by equation (40b), using the
model of flow over a dilute array of spheres similar to
those obtained for the body force as discussed in the
previous sections. To this end, we first rewrite equa-
tion (40b) as

’ ’ IV
vili=—

vé(n) T'_rtm d V
Vt’ ;4’!11

(43)

where V{" is the volume enclosing the ath sphere. In
cquation (43). v/ and T{" are the local velocity and
temperature deviations in the flow field near the nth
sphere which are given by

-3, (44a)

(44b)

vr'(m =y
i =TT,

with T denoting the local temperature in the pore.
With the aid of the geometric relation (29), equation
(43) can be rewritten as
o f VT Ay
¢ Jupm

where V¥ = V"/(4rnR>/3) is the dimensionless vol-
ume enclosing the nth sphere. It is important to note
that equation (45) contains a facter (1 —¢)/¢ which
takes into consideration the local pore geometry. To
evaluate the integral in equation (43). a solution for
T is needed in addition to r{™ which is given by
equations (21) and (25).

To obtain the governing equation for T{", we note
that the microscopic energy equation for 7§ is given
by

(43)

A in

C
(pCp)r@—[r F(PC )V (VO T) = V- (kVT™)

(46)

which is also the equation given by equation (32a).
Substituting equation (44b) into equation (46) and
subtracting equation (34a) divided by ¢ from the
resulting equation yields

~ (0}

(pCp)e {——.5; +V T+ T1
+V- [Vf'("’ T/ — W]}

.
=V [k VT =T~ [F ‘ kT dS]
[IRETS

1

£ Ay

kVT;-dS. 47)
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The last two nonlinear terms on the left-hand side of
equation (47) are of higher order and can therefore
be neglected. Using a scale argument and the quasi-
steady assumption of Zanotti and Carbonell [26],
equation (47) becomes

(pCV - (O T+ ¥ T7™)

1
=V (kVT{M)— [7‘[ kT dS] (48)
Ag

f

where we have used the continuity equation, and the
following integral results:

J T, dS :f 97T.-dS =0.

It is noted that the integral term on the right-hand
side of equation (48) is a constant in the volume
V.. This constant is implicit in the conductive term.
V-« [kV T;"]. The combined result of the two terms on
the right-hand side of equation (48) is to make the
right-hand side a fluctuative quantity to justify phys-
ically with the left-hand side. Solution forms for 7¢”
will now be considered for high and low Reynolds
number flows so that explicit expressions for thermal
dispersion given by the integral (43) can be evaluated.

(49)

THERMAL DISPERSION IN HIGH REYNOLDS
NUMBER FLOW (Re, > 10)

At high Reynolds numbers (Reg > 10), terms on
the right-hand side of equation (48) can be neglected
as they are associated with heat conduction. A dimen-
sional analysis (with d, as the length scale of the micro-
scopic coordinates) of the simplified equation gives

T = d f(r)- 9T (50)

where the macroscopic temperature gradient V7 has
been considered as a constant in the microscopic coor-
dinates and f(r") is a dimensionless vector function
depending on the microscopic coordinates (r’), whose
origin is at the center of the nth sphere.

From equation (21) the velocity near the nth sphere
is given by

(31
(52

= |Vrlg(r)
Vi = v —ve = [Tg ()
where g'(r’) is also a dimensionless vector function
depending only on the microscopic coordinates. Sub-

stituting equations (50) and (52) into equation (45)
yields

_.vf

oviT; = —2: VT (53)

where the thermal dispersion diffusivity tensor «’ is
given by

& = —(1—$)|¥/ld, L EEIO Ve (8
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Note that the integral in equation (54) is a dimen-
sionless tensor which can be evaluated numerically.
However, this is not necessary in view of the approxi-
mation of negligible interaction of spheres. To take
this effect into account, we now replace the integral
by an unknown dimensionless tensor D in equation
(54) to give

(

2 = DBV ld, = Q—;—"” Wi,  (55a)

It follows from equation (55a) that the thermal dis-
persion conductivity tensor k” is given by

(1-9) |¥ld, ( ¢)
Lo Ae

K = (0C)ex = Dk = Dk

(55b)

where Pe = (V¥|d,/2,is the Peclet number and the value
of D can be determined by a comparison with exper-
iments. Equation (55) shows that the thermal dis-
persion conductivity and thermal dispersion diffu-
sivity at high Reynolds numbers are linearly
proportional to the Peclet number, which is consistent
with most of the existing experimental correlations
[1-5].

THERMAL DISPERSION IN LOW REYNOLDS
NUMBER FLOWS (Re,, « 10)

The thermal dispersion conductivity tensor in low
Reynolds number flow (Rey, « 10) in a porous
medium can be obtained in a similar manner. At low
Reynolds numbers, where creeping flow prevails, the
velocity deviation from equation (25) is

Vi = vy = R G'(r')

(56)

where G'(r') is a dimensionless vector function
depending only on the local microscopic coordinates
(r). At low Reynolds number flow, where heat con-
duction is predominant, a scale analysis of equation
(48) shows that the temperature deviation in the pores
is given by

—"IVrlF(r) VT (57)
where VT has been considered as a constant in the
microscopic coordinates (r'), and F(r’) is a dimen-
sionless vector function depending only on the micro-
scopic coordinates r’. Equation (57) is the closure
scheme derived by Carbonell and Whitaker [25] using
another argument and assuming a periodic medium.
Substituting equations (56) and (57) into equation
(45) yields

GviT, = -2 VT (58a)

. [¥l® dzj B
¥ = —(1-¢)—"—2| GrF()dV*. (58b)
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If the integral in equation (58) is replaced by an
unknown tensor D*, it follows that the thermal dis-
persion diffusivity tensor is given by

(1-¢)

o2 = D* pE ()2 d 2 fo (59a)
and the thermal dispersion conductivity tensor &’ is
K =G = kp* C P

= k;D* (1;:@ Pe*  (59b)

where D* is the thermal dispersivity tensor at low
Reynolds number flow. Equation (59) shows that the
thermal dispersion diffusivity and the thermal dis-
persion conductivity have a quadratic dependence on
velocity. It is pertinent to point out that the velocity
and porosity dependencies in the expressions given by
equations (55) and (59) are different in the high and
low Reynolds number flow regions. This is analogous
to Darcian and Forchheimer’s frictional terms which
also have different velocity and porosity dependencies.
It follows from equations (42), (53) and (58a) that
the macroscopic energy equation for convection in a
porous medium with the fluid/solid matrix in local
thermal equilibrium is

Z1(pCy)i+ (1= B)(pCIT+(pCp)Y ]

=V, VT+k:VT). (60)

FORCED CONVECTION IN CYLINDRICAL AND
ANNULAR PACKED TUBES

A considerable amount of experimental work has
been carried out for forced convection of air
(Pr=0.7) in cylindrical and annular packed tubes
filled with glass spheres. In particular, Verschoor and
Schuit [19] have conducted an experiment on forced
convection of air in a cylindrical packed tube (having
a diameter of 43 mm) with uniform temperature, while
Quinton and Storrow [3] have performed another
experiment on a similar geometry (having a diameter
of 41.8 mm) with uniform heat flux. Yagi and Kunii
[5] have performed experiments for forced convection
of air in an annular packed tube heated asymmetri-
cally. Analyses of these experimental data based on a
hydrodynamically and thermally fully-developed flow
incorporating the wall function given by equation (4)
for radial thermal dispersion have been performed by
Cheng and co-workers [9, H]. In the following we
shall solve the same problems using the thermal dis-
persion conductivity given by equation (55a). In all
of the computations, the following values are used:
N,=5,C,=1,a=215and b = 1.92. Note that for
a hydrodynamically and thermally fully-developed
flow in a packed tube or channel, the thermal dis-
persion conductivity tensor kK’ reduces to a scalar
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which is the radial thermal dispersion conductivity
k;. According to equation (55b) the radial thermal
dispersion conductivity at high Reynolds numbers is
given by

k=D’ a ;4’) Pe,, k(u/uy) (61)
where ¢ is the porosity which is given by
d=0¢, . {1+C exp[—N(r,—1r)/d,]} (62a)
for a cylindrical packed tube with radius r,,, and
¢ =¢, {1+Cexp [~ N,(r,—r)/d,];
x {1+ C,exp [=N,(r—r)/d,]} (62b)

for an annular packed tube with inner and outer radii
r; and r,. In equation (61) u,, is the mean velocity in
the packed tube; Pe, = u,d,/«; is the Peclet number
based on u,, while « are the axial dimensionless vel-
ocity profiles which were recomputed according to the
methods described in the previous papers [7-13]. As
in the previous work [7-13], the value of the radial
thermal dispersivity D" will be determined by com-
paring the predicted heat transfer characteristics with
appropriate experimental data. It was found that the
predicted heat transfer characteristics would match
the best with experimental data if the value of
D’ = 0.04 was used for numerical computations.

A comparison of theoretical and experimentally
determined Nusselt numbers for a hydrodynamically
and thermally fully-developed flow in a cylindrical
packed tube with constant wall temperature and con-
stant heat flux are presented in Figs. 1 and 2, respec-
tively. It is shown that the theory and experiments are
in good agreement with each other.

Figure 3 is a comparison of theoretical and ex-
perimental temperature distributions for a fully-
developed forced convective flow in an annular
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FiG. 1. Predicted and measured Nusselt numbers for forced
convection of air in a cylindrical packed tube at constant
wall temperature.
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FiG. 2. Predicted and measured Nusselt numbers for forced
convection of air in a cylindrical packed tube at constant
heat flux.

packed column with y = d,/r, = 0.25and Rey = 131.4.
It is shown that the steep radial temperature gradient
observed in the experiment is reproduced approxi-
mately by the present theory. Figure 4 shows the com-
parison of the predicted and measured Nusselt num-
bers vs Re, for forced convection of air in the annular
packed tube with different particle diameters. The pre-
dicted Nusselt numbers are shown to be lower than
those obtained from experiments.

FORCED CONVECTION IN PACKED
CHANNELS

The problem of a thermally developing forced con-
vective flow in a packed channel heated asym-
metrically has been considered previously by Cheng et
al. [12] with the radial thermal dispersion conductivity
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FIG. 3. Predicted and measured radial temperature dis-
tribution in an annular packed tube with asymmetric heating.
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F1G. 4. Predicted and measured Nusselt numbers for forced
convection of air in an annular packed tube with asymmetric
heating.

given by equations (3) and (4). The same problem will
now be considered based on the present theory, and
the predicted temperature distributions will be com-
pared with experimental data obtained by Schroeder
et al. [20].

Figure 5 shows the predicted and experimentally
determined temperature distributions for forced con-
vection of water in a channel (with half width AH) filled
with two different sizes of glass spheres (7 = 0.0741
and 0.3704) at a location of x/2H =13.5 for
Re, = 405 and 321. It is seen that the observed tem-
perature gradients {20} are steeper than those pre-
dicted by the theory. For y = 0.3704 the predicted
temperature profile becomes almost linear, indicating
a thermally fully-developed flow is attained at x/2H =
13.5. The agreement between theory and experiments
for the case of y = 0.3704 is not as good as those for
y =0.074.

CONCLUDING REMARKS

The macroscopic equations for forced convection
of an incompressible flow in a variable porosity
medium are obtained based on a volume averaging of
the microscopic equations. The thermal dispersion
terms in the macroscopic energy equation are derived
by a volume average of the spatial velocity and tem-
perature derivations in the pores. With a scale analysis
of the governing equations for temperature
deviations, it is shown that the microscopic tem-
perature deviations in the pores are expressible in
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F1G. 5. Predicted and measured temperature distributions
for forced convection of water in a packed channel with
asymmetric heating.

terms of the macroscopic temperature gradient for
both high and low Reynolds number flows. However,
the resulting expressions for the thermal dispersion
conductivities in the two flow regimes contain differ-
ent porosity and Peclet number dependencies. The
value of the thermal dispersivity tensor must be deter-
mined by a comparison of theory and experiments.
For a nearly parallel flow at high Reynolds
numbers, the thermal dispersivity tensor reduces to a
scalar, i.e. the transverse thermal dispersivity. Thus,
the value of the transverse thermal dispersivity can be
obtained by comparing the predicted heat transfer
characteristics with experiments for forced convection
in cylindrical and annular packed tubes. The theory is
also applied to forced convection in a packed channel.
A preliminary version of the paper was published
in ref. [14] which contains an algebraic error in the
derivation of the thermal dispersion conductivity
tensor. For this reason, equations (53)—(55) as well as
(58)., (59), and (61) of this paper differ from those
presented in ref. {14] by a factor of ¢. Consequently,
the value of D’ = 0.04 reported in this paper differs
from the value of D’ = 0.02 reported in ref. [14].

C. T. Hsu and P. CHENG
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DISPERSION THERMIQUE DANS UN MILIEU POREUX

Résumé—Le tenseur de conductivité de dispersion thermique pour la convection dans un milieu poreux
est obtenu 4 partir de la méthode des volumes moyennant les déviations de vitesse et de température dans
les pores. Ces déviations sont obtenues a partir de la solution externe pour I'écoulement autour d’un
arrangement dilué de sphéres, avec analyse dimensionnelle. Une constante multiplicative (le tenseur de
dispersivité thermique) est introduite pour tenir compte de Uinteraction des sphéres. On consideére aussi
les écoulements rampants a faible nombre de Reynolds et 'écoulement de couche limite et des sillages 4
grand nombre de Reynolds. On trouve que la dépendance de la vitesse a la porosité dans le tenseur de
conductivité de dispersion thermique est différente pour les écoulements dans les milieux poreux selon que
le nombre de Reynolds est élevé on faible. La valeur de la dispersivité thermique transversale pour un
écoulement paralléle & grand nombre de Reynolds est déterminée en comparant les caractéristiques de
transfert thermique prédites aux résultats expérimentaux connus pour la convection forcée de 'eau et de
I’air & travers des lits fixes chauds.

THERMISCHE DISPERSION IN EINEM POROSEN MEDIUM

Zusammenfassung— Der Tensor der Warmeleittdhigkeit bei thermischer Dispersion wird fiir Konvektion
in einem pordsen Medium hergeleitet. Grundlage ist eine volumetrische Mittelwertsbildung der Temperatur-
und Geschwindigkeitsschwankungen in den Poren. Diese Schwankungen ergeben sich aufgrund der iuBeren
Losung fiir eine Strémung iiber eine verdiinnte Anordnung von Kugeln unter Anwendung einer Dimen-
sions- und GroBenordnungsanalyse. Eine multiplikative Konstante (d. h. der Tensor der thermischen
Dispersivitdt) wird eingefiihrt, um die Wechselwirkung der Kugeln zu beriicksichtigen. Bei kleinen Rey-
nolds-Zahlen wird die schleichende Strémung mit einbezogen, bei groBen Reynolds-Zahlen die Grenz-
schichtstrdomung und die Wirbelgebiete. Es zeigt sich, daB die Einfliisse von Geschwindigkeit und Porositit
im Wirmeleitfahigkeitstensor bei thermischer Dispersion unterschiedlich sind fiir hohe und fiir niedrige
Reynolds-Zahlen der Strémung im porbsen Medium. Der Wert der quergerichteten thermischen Dis-
persion wird fiir eine nahezu parallele Stromung bei hoher Reynolds-Zahl dadurch bestimmt, daB der
berechnete Wirmeiibergang mit vorhandenen experimentellen Ergebnissen fiir erzwungene Strémung von
Wasser und Luft durch Festbettanordnungen verglichen wird.

PACCESIHHUE TEIUIA B [TIOPUCTON CPEJE

Aunoraums—/Ina HCCEN0BAHNA KOHBEKLMH B NOPHCTOM Cpelie METOJOM YCPeAHEHHA OTKIOHCHHH CKO-
POCTH M TEMICPATYPHl HANNEH TECH3OP TEMNONPOBOAHOCTH. OTKJIOHEHHA CKOPOCTH H TEMIEPATYphl
ROJIy4eHbl H2 OCHOBE BHELUHErO PEIUECHHA UIA MOTOKA Hal paccpeNoTOueHHOM ynakoBkol cdep cos-
MECTHO C AHAJIH30M Pa3MEpPHOCTeH M wikan. 1A ydyera B3auMoneAcTua chep BBOIMTCH NOCTONHHBIA
MHOXHTED (T.€. [UIN TEH30pa TEMJIONPOBOAHOCTH). OTAENLHO PaCCMATPHBAIOTCA NMOM3Y4Mil NOTOK NpH
HHIKHX 3HAYCHMAX vuCna Pefinonbaca, a Takke TeueHHE B MOrPAHHYHOM CJIOC M CNEAB MPH BRICOKHX
3HaveHHax ducna Peitnonsbaca. Haiineno, 4To 3aBHCHMOCTL KOMNOHEHT TEH30PA TEILIONPOBOIHOCTH OT
NOPO3HOCTH H CKOPOCTH PaljIM4HA [UIA TEYCHHH B MOPHCTHIX CPEAax MpPH BHCOKHX B HHIKHX 3HAYCHHAX
uncia Pefinonbaca. 3HaueHHE NONCPEYHON TEIUIONPOBOAHOCTH B Cly4ae NOYTH NAPANNCALHOTO TEUEHHS
npH BLICOKHX 4ucinax Peffnonbaca onpenenseTca NoCpencTBOM CONOCTAB/ICHHA PACYCTHBIX XapaKTEPHC-
THK TEMJIONEPEHOCA C HMEIOLHMHCR IKCNICPHMEHTANBHLIMH JAHHBIMH LIS BHIHYXKIEHHON KOHBEKIHH
BOIbI M BO3AYXa Y€PE3 HATPEThIC YIAKOBAHHBIE CJIOH.



