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Abstract-The thermal dispersion conductivity tensor for convection in a porous medium is derived based 
on the method of volume averaging of the velocity and temperature deviations in the pores. The velocity 
and temperature deviations are obtained based on flow over a dilute array of spheres, incorporated with 
a scale analysis. A multiplying constant (i.e. the thermal dispersivity tensor) is introduced to account for 
the interaction of spheres. Separate considerations are given to the creeping flow at low Reynolds numbers, 
as well as boundary layer flow and wakes at high Reynolds numbers. It is found that the velocity and 
porosity dependencies in the thermal dispersion conductivity tensor are different for high Reynolds number 
and low Reynolds number porous media flows. The value of the transverSe thermal dispersivity for a 
nearly parallel flow at high Reynolds numbers is determined by comparing the predicted heat transfer 
characteristics with existing experimental results for forced convection of water and air through heated 

packed channels and cylindrical packed tubes. 

INTRODUCTION 

IT HAS been well established in the chemical engin- 
eering literature that thermal dispersion effects play 
an important role on forced convection in porous 
media [l-5]. Experiments on forced convection in 
packed columns have shown that the average radial 
or transverse thermal dispersion conductivity at high 
Reynolds numbers can be correlated as a linear func- 
tion of Reynolds number [l-5], i.e. 

(k;)& = CT Pe, (1) 

where (k;),” is the cross-sectional average of the radial 
thermal dispersion conductivity ; kr the stagnant ther- 
mal conductivity of the fluid ; C, = 0.09 w 0.1 [4, 51; 
Pe, the Peclet number defined as Pe,,, = Re,, Prf = 
u,,,d,/a, (with Prr = vr/ar being the Prandtl number 
of the fluid and Red the Reynolds number based 
on the particle diameter d, and the mean velocity u,). 
From early experiments [ 1,2,5], it has been observed 
that steep radial temperature gradients exist near the 
heated or cooled wall in the packed columns. These 
steep temperature gradients were attributed to the 
channeling effect in early work [6]. 

In a series of papers, Cheng et al. [7-141 have 
analyzed the phenomena of steep temperature gradi- 
ents in forced convection in a packed column by tak- 
ing into consideration the effects of thermal disper- 
sion, variable porosity, and nonuniform velocity 
distribution. In their analyses, the porosity dis- 
tribution is approximated by an exponential function 
of the form [15] 

do = Ml+CI exp (-JJd+Ql (2) 

where y is the distance from the wall; d, the particle 
diameter, #J, = 0.4 the porosity of the bed away from 
the wall; N, = 2 and C, = 1 are the empirical con- 
stants used in most of the early work [7-12, 15-171, 
while the values of N, = 5 w 6 and C, = 1 were used in 
more recent work [12-14, 181. Based on the cor- 
relation given by equation (l), Cheng et al. [7-141 
assumed that the local transverse thermal dispersion 
conductivity k; is 

kT/k, = DT Pe,,,f(u/u,) (3) 

where the factor u/u, is introduced to account for 
the local velocity variation. In equation (3) I is a 
dimensionless dispersive length (normalized with 
respect to d,) which was represented by a two-layer 
model [7,8] in early work and is modeled as the Van Driest 
type of wall function in more recent work [9-131. The 
Van Driest type of wall function is given by 

I = 1 -exp [-y/d,] (4) 

where o is an empirical constant. Cheng et al. (7, lo] 
found that without the wall function in equation (3) 
the observed steep radial temperature gradients from 
experiments cannot be reproduced in theory. This 
implies that the channeling effect alone is not respon- 
sible for the observed temperature gradient behavior. 
The empirical constant DT in equation (3) and o in 
equation (4) were obtained by comparing the pre- 
dicted heat transfer characteristics with experimental 
data. Thus, the values of DT and w depend on the 
values of N, and C, used in equation (2). The fol- 
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NOMENCLATURE 

A area of fluid-solid interface N, constant defined in equation (2) 
a, b Ergun’s constants P pressure 
B body force per unit volume Pe, Peclet number defined in equation (1) 

C, specific heat at constant pressure Pr[ Prandtl number of the fluid phase 
, ” co, co, co constants defined in equations (26) r radial coordinate 

and (28) r. radius of a packed column 

Cl constant defined in equation (26) R radius of a sphere 

C, constant defined in equation (2) Ree, local Reynolds number based on particle 

CD drag coefficient defined in equation (23a) diameter and the local average pore 

C, constant defined in equation (I) velocity 
D thermal dispersivity tensor Red Reynolds number based on particle 
D’“’ drag force for the nth sphere diameter and the mean velocity 
DT constant defined in equation (3) S surface 

(i, particle diameter T temperature 
F inertial coefficient t time 
f dimensionless vector function defined in 11, mean velocity in a packed column 

equation (50) V elementary volume 
F dimensionless vector function defined in L velocity 

equation (57) cz any physical quantity 

g dimensionless vector function defined in s. 1‘. z rectangular coordinates. 
equation (22) 

g’ dimensionless vector function defined in Greek symbols 
equation (52) Y thermal diffusivity 

G dimensionless vector function defined in 11 dynamic viscosity of the fluid phase 
equation (25) \ kinematic viscosity of the fluid phase 

G’ dimensionless vector function defined in p density 
equation (56) 4 porosity of the packed bed 

H half width of a packed channel w dimensionless constant defined in 
i, j, k unit vectors in the .Y-, _r- and z-directions equation (4). 
K permeability 

k, stagnant thermal conductivity of the fluid Subscripts 
saturated porous medium av average quantity 

kr thermal conductivity of the fluid phase f quantity associated with the fluid phase 
k, radial thermal dispersion conductivity of s quantity associated with the solid phase 

the packed column quantity associated with the z-phase 

k, thermal conductivity of the solid phase ; quantity associated with the a-phase 
k; local radial thermal dispersion X quantity at infinity. 

conductivity 
I wall function or dispersive length Superscripts 
n outward unit vector of a surface * dimensionless quantity 
N number of spheres in an elementary - 

spatial average quantity 
volume deviation quantity. 

lowing values of D, and w were obtained for the best 
match between theory and experiments [9-131: 

(i) D, = 0.17 and w = I.5 if N, = 2 and C, = I, 
and 

(ii)Dr=0.12andw=l.OifN,=5andC,=l.4. 

Although theoretical results based on this ad hoc 
approach (i.e. equations (3) and (4)) agree with a 
number of experimental results, the approach lacks a 
rigorous mathematical basis, and is therefore subject 
to criticism. 

In this paper, the thermal dispersion conductivity 

tensor for porous media flow is derived more rigor- 
ously from a volume averaging of the velocity and tem- 
perature deviations in the pores. The closure schemes 
for the thermal dispersion conductivity tensor are 
obtained based on the model of flow over a dilute 
random array of spheres. Explicit expressions of the 
thermal dispersion conductivities (within a mul- 
tiplying constant) for high and low Reynolds number 
flows are obtained in terms of the Peclet number and 
a factor taking into consideration the local porosity 
variation in an approximate manner. The value of 
the transverse thermal dispersivity for high Reynolds 



number flows is obtained by comparing the predicted 
heat transfer characteristics with existing exper- 
imental data for forced convection of air (Pr = 0.7) 
through an annular [5] and a cylindrical packed 
column under constant heat flux [3] or constant 
wall temperature [19] conditions. The approach was 
also applied to the problems of thermally developing 
forced convection of water (Pr = 5.5) through a 
packed channel where experimental data is available 

POI. 
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_I 

V=i&+j$+k& (7a) 

. 
V=i&+jg+k$. (7b) 

Equation (6) can easily be obtained by applying the 
gradient and divergence theorems to a representative 
control volume V. 

THE METHOD OF VOLUME AVERAGING 

The macroscopic conservation equations for con- 
vective heat transfer in a porous medium can be 
obtained by a volume averaging of the microscopic 
conservation equations over a representative volume 
[21-261. In this section, a brief discussion of the vol- 
ume averaging process will be presented. 

W=dV 

The microscopic continuity equation for an incom- 
pressible flow is given by 

v-v,=0 (8) 

where vris the microscopic velocity vector. Integrating 
equation (8) with respect to a representative volume 
in a porous medium, dividing the resulting expression 
by V and with the aid of equation (6b) yields 

O*(&) = 0 (9a) 

where C#J = VJV is the porosity while tr is the volu- 
metric average (macroscopic) velocity vector. Equa- 
tion (9a) can be rewritten as 

V*(v)=0 Pb) 

where v = 4vr is the Darcy velocity vector. 

Consider a representative volume V in a porous 
medium consisting of an a-phase and a P-phase. If W, 

is a quantity associated with the a-phase, an intrinsic 
phase average of W, is defined as [2 1,221 

where the volumetric integration is to be carried out 
over dV = d.r’ dy’ dz’ with (x’, y’, I’) denoting the 
microscopic coordinates. In equation (5) V, is the 
volume occupied by the r-phase in V, and 
V,+ VP = V, with VP being the volume occupied by 
the B-phase in V. 

To derive the macroscopic equations from the 
microscopic equations, the following averaging the- 
orems similar to those obtained by Whitaker [21] and 
Slattery [22] relating the volume average of a spatial 
derivative to the spatial derivative of the volume aver- 
age are needed : 

1 
v 

1 
v V.W,dV=,.[_:S,W.dV]+~~~W~.d~ 

(6b) 

where A,, is the interface between the LX- and /?-phase 
in V, dS is a surface vector, and W, and W, are a 
scalar and a vector, respectively. In equation (6), we 
differ from the previous work (21, 221 by dis- 
tinguishing the gradient operators in the microscopic 
(x’, y’, I’) and macroscopic coordinates (x, y, z) by V 
and V which are defined as 

THE MACROSCOPIC CONTINUITY 

EQUATIONS 

THE MACROSCOPIC MOMENTUM 

EQUATION 

The microscopic momentum equation for an 
incompressible flow in a porous medium is given by 
the Navier-Stokes equation 

Pr~!+v.(v&]= -vp,+./.Pv, (10) 

where pr and pr are the density and viscosity of the 
fluid while pr is the pressure of the fluid. Integrating 
the above equation with respect to a representative 
volume and with the aid of equation (6) gives 

B= -;~~/dS+$~,.(Vv,)dS (llb) 

which is the total drag force per unit volume (body 
force) due to the presence of the solid particles. 

We now decompose the microscopic velocity vector 
vf into the sum of the intrinsic phase average (macro- 
scopic) velocity vector vr and a deviation velocity vec- 
tor vi [23], i.e. 
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Vf = v,+v;. (12) 

It can be shown that 
- 

G = t,v,+ v;.v;. (13) 

Substituting equation (13) into equation (1 la) gives 

= -P(&J,)+#(+V,)+B. (14) 

The second term on the left-hand side of equation 
(14) represents the macroscopic inertia force which is 
usualiy less important as compared to the terms on the 
right-hand side of equation (14) where the pressure 
gradient is balanced by the body force over the entire 
porous media, except near the wall for which the 
Brinkman’s frictional effect predominates. The third 
term on the left-hand side of equation (14) represents 
the hydrodynamic dispersion which is of higher order 
as compared to the second term on the left-hand side 
ofequation (14), and can therefore be neglected. Thus, 
equation (14), in terms of the Darcy velocity, reduces 
to 

where p = @,-. 

CLOSURE MODELING FOR THE DRAG 

FORCE DUE TO SOLID PARTICLES 

To obtain closures for the body force term B, we 
now consider flow past a dilute random array of 
spheres (i.e. spheres with negligible interaction) with 
a macroscopic velocity vector vr. If the representative 
volume Vcontains N spheres of diameter dp (or radius 
R), equation (11 b) becomes 

where 

B = ND’“‘/V (16) 

represents the drag force on the nth sphere. In equa- 
tion (I 7), pp) and v$“) are the local pressure and velocity 
in the flow field around the nth sphere. The macro- 
scopic pressure pr and velocity 5, can now be regarded 
as the ambient condition. With the quasi-steady state 
assumption [26], the momentum equation for v$“’ 
according to equation (10) is 

P&r”’ ‘V)V:“’ = -Vp:n’ +~rVv:n’. (18) 

We now introduce the following dimensionless 
variables : 

v: = vp/p,j, p: = (pp --pr)/prlfr12 

pz*,l’*, z *) = (.r’/d,,f&, Y/d,). (19) 

Equation (18), in terms of these dimensionless vari- 
ables, becomes 

(v: * v*)v: = -v*p: + &v*-v: (20) 
fd 

where 

is the dimensionless gradient operator. and Re, = 

jCfldp/vf is the Reynolds number based on particle 
diameter and average pore velocity. The boundary 
conditions for vf are 

and 

vl) = 0 on the surface of the sphere (21a) 

v: = Vr/lt,l = i, away from the sphere (21 b) 

where i, is a unit vector in the Vr direction. 

DRAG FORCE FOR HIGH REYNOLDS 

NUMBER FLOWS (Ret,, >> 10) 

At high Reynolds number flow (ReiJ >s IO), there 
exists a viscous boundary layer of O(Rr,“*) at the 
proximity of the spherical wall. Outside the viscous 
boundary layer, the viscous terms are less important 
and they represent a higher order correction to the 
potential flow produced by the balance between the 
advection and pressure terms. Solutions to equations 
(20) and (8) subject to boundary conditions (21) at 
high Reynolds number can be found in the open litera- 
ture. In this study, it is sufficient to give a general 
expression of the solution outside the boundary layer 
in the polar coordinates (r*, 0) as 

VT = g(r*,@+O(ReG”‘) (22) 

where g satisfies g(a, 6) = i, and g(1,:2,0) = t(0) with 
t being a vector tangential to the surface of the sphere. 

To evaluate the drag force on the sphere, the bound- 
ary layer solution to equations (20) and (21) is needed. 
For this purpose, equation (20) will now be expressed 
in term of a new scale ‘I* = (r*- 1/2)Re,:‘. The drag 
force can then be obtained through a matched asymp- 
totic expansion procedure [28] to give 

where 

(23a) 

6~ 
CD = - ReiJ2 [cL+c’, Ref,’ ‘+O(ReG’)]. (23b) 

The zero order term in equation (23b) is due to the 
skin friction while the first order correction is due to 
the form drag associated with the stagnation flow near 
the leading edge. 
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In equation (29a) c,,, cb and cz are constants. Equation 
(29b), with c,, = a(1 -4)/18& cb = 0 and c: = b/18, 
reduces to Ergun’s expression 

Drag force for low Reynolds numberflows ( Rerd << 10) 
At low Reynolds numbers (Rerd << lo), the viscous 

effect is significant for the entire flow field. The pres- 
sure generated in a creeping flow depends not only on 
the flow velocity but also on the viscosity. The proper 
scale for pressure is p&l/d, and the dimensionless 
pressure is given by pi* = (p$“‘--jQ~/~r~+~ = p: Reu. 
Equation (20), in terms of this dimensionless pressure, 
becomes 

Re&vp -V*)v: = -V*p;*+V**v:. (24) 

The solution to equation (24) for low Reynolds num- 
ber flow can be expressed in the form 

B = _ !+@ I p Fhbl 
K -1 ' JK 

(30) 

where v = 4vr is the Darcy velocity, K = 
Q'd$a(l -4)’ and F = b/ Jacj*‘, with a and b being 
the Ergun constants. It follows from equations (15) 
and (30) that the macroscopic momentum equation 
for an incompressible flow in a variable porosity 
medium is 

vi * = G(r*, 6) + O(Reu) (25) 

where G(r*,@ satisfies the boundary condition 
G(1/2,0) = 0. For low Reynolds number flow, the 
drag force is contributed from both the pressure drag 
and skin friction, and the result for the drag coefficient 
is given by 

qg +v. (yJ] = -vp+~crv*v 

6x 
C, = - [co + cl Reu + 0 (Reh)] 

Re, 
(26) 

where the zero order term is the Stokes drag and the 
first order correction is Oseen’s correction associated 
with the inertial terms in equation (24). 

THE MACROSCOPIC ENERGY EQUATION 

The microscopic energy equations for the fluid and 
solid phases are 

Composite espression for the drag force 
From equation (26) it is observed that at low Reyn- 

olds number flow, the drag coefficient is dominated 
by 6zc,,IRerd associated with the Stokes drag, and the 
inertial force represents a first order correction which 
is given by 61rc,. Equation (23) shows that as the 
Reynolds number is increased, the skin friction of the 
laminar boundary layer becomes dominant with a 
drag coefficient of 6nci/Re$’ and, at the same time, 
the Stokes drag is degenerated to a stagnation form 
drag near the leading edge of the sphere with 
additional drag coefficient given by 6nc’,/Re, If the 
Reynolds number is increased further, the flow is 
expected to separate from the surface of the sphere to 
form a wake. The drag force associated with the wake 
is predominated by the inertial effect of the flow with 
a constant drag coefficient, i.e. 

(PC,), 
[ 

z +V-(v,Tr) = V-&VT,) (32a) 1 
and 

aT, 
(PC,), x = V * &VT,) WW 

where the interface conditions are 

Tf = T, on Afs (33a) 

n,*$VT, = n,.k,VT, on An. (33b) 

With the aid of equation (6) a volume averaging of 
equation (32) gives 

C, = 611~;. (27) 

Combining equations (23) (26) and (27), we write the 
drag coefficient as 

Co = 6n(cO/Rerd+c6/Re~&‘+c~). (28) 

Substituting equations (23) and (28) into equation 
(16) yields 

and 

+; kfV T, . dS (34a) 

-+$)(~C,),i,l = V*L%V(l-4)Zl 

B = _ IV-4) 
7 [co + 4, Re$* + c6 Rerd]prlVrliv 

(294 
where we have used the geometric relation 

4nR3NJ3V= 1-d. (29b) 

where (PC,), and (PC,), are the heat capacities of the 
fluid and the solid phases ; Tr and T, the fluid and 
solid temperatures which are related to their intrinsic _ 

. I phase temperatures rr and T$ by 

-v.[_:L,,k.7, dS] -;l<,k,VT;dS (34b) 
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T, d V. (35) 

The quantity v,Tr in equation (34a) is defined as 

- 1 
v,Tr = - c 

Vf Jv, 
vrTf d V. 

Adding equations (34a) and (34b) and with the aid of 
boundary condition (33b) yields 

(k,T,-k,T,) dS 
I 

. 

(37) 

We now decompose T, and T, as [26] 

T, = Tr+T; 

T, = T$+T:. (38) 

At this point, we make use of the local thermal equi- 
librium assumption [26], i.e. 

Ff = i;, = T. (39) 

Substituting equations (13) and (38) into equation 
(37) and with the aid of equation (39) leads to 
* 

&(PC”)‘CU -@(PC,)J~ 

+(pC,),O.[~(~r~+v;T;)] = a’[#,+(1 -4)k,]T 

(k,T;-- k, T:) dS (40a) 

where 

v;T; d V (40b) 

represents the thermal dispersion effect. Nozad ef nl. 
[25] showed that the terms on the right-hand side of 
equation (40b) can be closed by 

-k,T;) dS 
I 

= v-&vi;) (41) 

where kd is the stagnant thermal conductivity of the 
saturated porous medium. Equation (40a). with equa- 
tion (41), reads 

$#0CJ,f(l -~)(PC,)J~+(PC,)r~ 

- [&(V$+v;T;)] = 0 - (&UT‘) (42) 

which is the macroscopic energy equation for con- 
vection in a porous medium. 

CLOSURE MODELING FOR THERMAL 

DISPERSION 

We now discuss the closure modeling for thermal 
dispersion given by equation (40b), using the 
model of Row over a dilute array of spheres similar to 
those obtained for the body force as discussed in the 
previous sections. To this end, we first rewrite equa- 
tion (40b) as 

~ iv 
I , 

vfTf = v, 

where I’:!” is the volume enclosing the rzth sphere. In 
equation (43). vi”” and T;“” are the local velocity and 
temperature deviations in the flow field near the nth 
sphere which are given by 

V ‘(,I) = $,“! _ F. 
r I t (44a) 

j’-!(“’ = T’.“’ _ 7. I f (4db) 

with T:“’ denoting the local temperature in the pore. 
With the aid of the geometric relation (29), equation 
(43) can be rewritten as 

q+2? ~ 
s 
I T’,,, VI:“” 7;‘“’ d V* (45) 

where V:“” = V~?‘/(4nR3/3) is the dimensionless vol- 
ume enclosing the nth sphere. It is important to note 
that equation (45) contains a factor (I- c$)/c#J which 
takes into consideration the local pore geometry. To 
evaluate the integral in equation (45). a solution for 
T;“” is needed in addition to r;“” tvhich is given by 
equations (21) and (25). 

To obtain the governing equation for T;‘“‘, we note 
that the microscopic energy equation for Ty’ is given 

by 

(PC,),% +(pC,),V* ($‘T;-“‘) = V- (k,VT’r’) 

(46) 

which is also the equation given by equation (32a). 
Substituting equation (44b) into equation (46) and 
subtracting equation (34a) divided by 4 from the 
resulting equation yields 

+ v . [+p) Jy’“’ - r:‘“l] j 

= V*[k,VT;‘“‘]-v* [:;_[,,,MfdSj 

I -- 
s Vf lh 

k,VT, * dS. (47) 
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The last two nonlinear terms on the left-hand side of 
equation (47) are of higher order and can therefore 
be neglected. Using a scale argument and the quasi- 
steady assumption of Zanotti and CarbonelI 1261, 
equation (47) becomes 

(pC,),V * (v;‘“‘Tf+ C,p) 

= v . (kfVT;(“)) - [+[,,k,VT;‘“‘*dS] (48) 

where we have used the continuity equation, and the 
following integral results : 

(49) 

It is noted that the integral term on the right-hand 
side of equation (48) is a constant in the volume 
V,. This constant is implicit in the conductive term. 
V * [kVT;(“)]. The combined result of the two terms on 
the right-hand side of equation (48) is to make the 
right-hand side a fluctuative quantity to justify phys- 
ically with the left-hand side. Solution forms for T;f”) 
will now be considered for high and low Reynolds 
number flows so that explicit expressions for thermal 
dispersion given by the integral (43) can be evaluated. 

THERMAL DISPERSION IN HIGH REYNOLDS 

NUMBER FLOW (Re,, a 10) 

At high Reynolds numbers (Rerd>> IO), terms on 
the right-hand side of equation (48) can be neglected 
as they are associated with heat conduction. A dimen- 
sional analysis (with dp as the length scale of the micro- 
scopic coordinates) of the simplified equation gives 

T;‘“’ = d,f(r’) - Vi; W) 

where the macroscopic temperature gradient VT has 
been considered as a constant in the microscopic coor- 
dinates and f(r’) is a dimensionless vector function 
depending on the microscopic coordinates (r’), whose 
origin is at the center of the nth sphere. 

From equation (21) the velocity near the nth sphere 
is given by 

vr’ = ]i;rfg(r’) (51) 

vf r(n) = $0 _v 
f = IJflg’W (52) 

where g’(r’) is also a dimensionless vector function 
depending only on the microscopic coordinates. Sub- 
stituting equations (50) and (52) into equation (45) 
yields 

#v;T;= -,r’: VT (53) 

where the thermal dispersion diffusivity tensor g‘ is 
given by 

2’ = -(I - $)jfrld,, 
I 

g’(r’)f(r’) d Y*. (54) 
V? 

Note that the integral in equation (54) is a dimen- 
sionless tensor which can be evaluated numerically. 
However, this is not necessary in view of the approxi- 
mation of negligible interaction of spheres. To take 
this effect into account, we now reptace the integral 
by an unknown dimensionless tensor Q in equation 
(54) to give 

It follows from equation (55a) that the thermal dis- 
persion conductivity tensor k’ is given by 

(55b) 

where Pe = I?ldp/rris the Peclet number and the value 
of e can be determined by a comparison with exper- 
iments. Equation (55) shows that the thermal dis- 
persion conductivity and thermal dispersion diffu- 
sivity at high Reynolds numbers are linearly 
proportional to the Peclet number, which is consistent 
with most of the existing experimental correlations 
[l-5]. 

THERMAL DlS@ERSlON IN LOW REYNOLDS 

NUMBER FLOWS (Re,,c< 10) 

The thermal dispersion conductivity tensor in low 
Reynolds number flow (Re, << IO) in a porous 
medium can be obtained in a similar manner. At low 
Reynolds numbers, where creeping flow prevails, the 
velocity deviation from equation (25) is 

v f ‘cn) = v:“’ -yf = Ii&‘@‘) (56) 

where G’(r’) is a dimensionless vector function 
depending only on the local microscopic coordinates 
(r’). At low Reynolds number Row, where heat con- 
duction is predominant, a scale analysis of equation 
(48) shows that the temperature deviation in the pores 
is given by 

(57) 

where VP has been considered as a constant in the 
microscopic coordinates (r’), and F(r’) is a dimen- 
sionless vector function depending only on the micro- 
scopic coordinates r’. Equation (57) is the closure 
scheme derived by Carbonell and Whitaker [25] using 
another argument and assuming a periodic medium. 
Substituting equations (56) and (57) into equation 
(45) yields 

where 

f$v;T; = +:vr (58a) 

s %- v; 
G’(r’)F(r’) d V*. (SSb) 
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If the integral in equation (58) is replaced by an 
unknown tensor e*, it follows that the thermal dis- 
persion diffusivity tensor is given by 

and the thermal dispersion conductivity tensor 5’ is 

(I-4) - 7 2 

= k D*(*-%'e' (59b) r= $2 

where e* is the thermal dispersivity tensor at low 
Reynolds number flow. Equation (59) shows that the 
thermal dispersion diffusivity and the thermal dis- 
persion conductivity have a quadratic dependence on 
velocity. It is pertinent to point out that the velocity 
and porosity dependencies in the expressions given by 
equations (55) and (59) are different in the high and 
low Reynolds number flow regions. This is analogous 
to Darcian and Forchheimer’s frictional terms which 
also have different velocity and porosity dependencies. 
It follows from equations (42) (53) and (58a) that 
the macroscopic energy equation for convection in a 
porous medium with the fluid/solid matrix in local 
thermal equilibrium is 

FORCED CONVECTION IN CYLINDRICAL AND 

ANNULAR PACKED TUBES 

A considerable amount of experimental work has 
been carried out for forced convection of air 
(Pr = 0.7) in cylindrical and annular packed tubes 
filled with glass spheres. In particular, Verschoor and 
Schuit [19] have conducted an experiment on forced 
convection of air in a cylindrical packed tube (having 
a diameter of 43 mm) with uniform temperature, while 
Quinton and Storrow [3] have performed another 
experiment on a similar geometry (having a diameter 
of 41.8 mm) with uniform heat flux. Yagi and Kunii 
[5] have performed experiments for forced convection 
of air in an annular packed tube heated asymmetri- 
cally. Analyses of these experimental data based on a 
hydrodynamically and thermally fully-developed flow 
incorporating the wall function given by equation (4) 
for radial thermal dispersion have been performed by 
Cheng and co-workers [9, 1 I]. In the following we 
shall solve the same problems using the thermal dis- 
persion conductivity given by equation (55a). In all 
of the computations, the following values are used: 
N, = 5, C, = 1, n = 215 and b = 1.92. Note that for 
a hydrodynamically and thermally fully-developed 
flow in a packed tube or channel, the thermal dis- 
persion conductivity tensor &’ reduces to a scalar 

which is the radial thermal dispersion conductivity 
k:. According to equation (55b) the radial thermal 
dispersion conductivity at high Reynolds numbers is 
given by 

k: = Dfy Pe, k,(u/u,) (61) 

where 4 is the porosity which is given by 

4 = 4,(l+C, exp[-N,(r,-r)/d,]j (62a) 

for a cylindrical packed tube with radius r,, and 

~=~,{1+C,exp[-N,(r,-r)ln,l) 
x (I+C, exp[-N,(r-r,)!d,]i (62b) 

for an annular packed tube with inner and outer radii 
r, and ro. In equation (61) II, is the mean velocity in 
the packed tube; Pe, = ~l,,,c/~pls(~ is the Peclet number 
based on u,, while LI are the axial dimensionless vel- 
ocity profiles which were recomputed according to the 
methods described in the previous papers [7-131. As 
in the previous work [7-131, the value of the radial 
thermal dispersivity D’ will be determined by com- 
paring the predicted heat transfer characteristics with 
appropriate experimental data. It was found that the 
predicted heat transfer characteristics would match 
the best with experimental data if the value of 
D’ = 0.04 was used for numerical computations. 

A comparison of theoretical and experimentally 
determined Nusselt numbers for a hydrodynamically 
and thermally fully-developed flow in a cylindrical 
packed tube with constant wall temperature and con- 
stant heat flux are presented in Figs. I and 2, respec- 
tively. It is shown that the theory and experiments are 
in good agreement with each other. 

Figure 3 is a comparison of theoretical and ex- 
perimental temperature distributions for a fully- 
developed forced convective flow in an annular 
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FIG. I. Predicted and measured Nusselt numbers for forced 
convection of air in a cylindrical packed tube at constant 

wall temperature. 
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FIG. ?. Predicted and measured Nusseh numbers for forced 
convection of air in a cylindrical packed tube at constant 

heat flux. 

packed column with 7 = dplri = 0.25 and Re,, = 13 1.4. 
It is shown that the steep radial temperature gradient 
observed in the experiment is reproduced approxi- 
mately by the present theory. Figure 4 shows the com- 
parison of the predicted and measured Nusselt num- 
bers vs Re, for forced convection of air in the annular 
packed tube with different particle diameters. The pre- 
dicted Nusselt numbers are shown to be. lower than 
those obtained from experiments. 

FORCED CONVECTION IN PACKED 

CHANNELS 

The problem of a thermally developing forced con- 
vective flow in a packed channel heated asym- 
metrically has been considered previously by Cheng et 
nl. [12] with the radial thermal dispersion conductivity 

ra 

I! 

8 

P 
l- 8 

s! 

ia 

0 

I- 5 D,- 0.04 

- 0.25 Re,- 131 
r- 0.7 

N 

K 

-P 

/ 

-t- 
1.1 ca 1:44 1:88 2:32 2:76 

r”/r;’ 

FIG. 3. Predicted and measured radial temperature dis- 
tribution in an annular packed tube with asymmetric heating. 
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FIG. 4. Predicted and measured Nusselt numbers for forced 
convection of air in an annular packed tube with asymmetric 

heating. 

given by equations (3) and (4). The same problem will 
now be considered based on the present theory, and 
the predicted temperature distributions will be com- 
pared with experimental data obtained by Schroeder 
et al. [20]. 

Figure 5 shows the predicted and experimentally 
determined temperature distributions for forced con- 
vection of water in a channel (with half width H) filled 
with two different sizes of glass spheres (7 = 0.0741 
and 0.3704) at a location of x/2H = 13.5 for 
Re, = 405 and 321. it is seen that the observed tem- 
perature gradients (201 are steeper than those pre- 
dicted by the theory. For y = 0.3704 the predicted 
temperature profile becomes almost linear, indicating 
a thermally fully-developed flow is attained at x/2H = 
13.5. The agreement between theory and experiments 
for the case of y = 0.3704 is not as good as those for 
y = 0.074. 

CONCLUDING REMARKS 

The macroscopic equations for forced convection 
of an incompressible flow in a variable porosity 
medium are obtained based on a volume averaging of 
the microscopic equations. The thermal dispersion 
terms in the macroscopic energy equation are derived 
by a volume average of the spatial velocity and tem- 
perature derivations in the pores. With a scale analysis 
of the governing equations for temperature 
deviations, it is shown that the microscopic tem- 
perature deviations in the pores are expressible in 
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FIG. 5. Predicted and measured temperature distributions 
for forced convection of water in a packed channel with 

asymmetric heating. 

terms of the macroscopic temperature gradient for 
both high and low Reynolds number flows. However, 
the resulting expressions for the thermal dispersion 
conductivities in the two flow regimes contain differ- 
ent porosity and Peclet number dependencies. The 
value of the thermal dispersivity tensor must be deter- 
mined by a comparison of theory and experiments. 

For a nearly parallel flow at high Reynolds 
numbers, the thermal dispersivity tensor reduces to a 
scalar. i.e. the transverse thermal dispersivity. Thus, 
the value of the transverse thermal dispersivity can be 
obtained by comparing the predicted heat transfer 
characteristics with experiments for forced convection 
in cylindrical and annular packed tubes. The theory is 
also applied to forced convection in a packed channel. 

A preliminary version of the paper was published 
in ref. [I41 which contains an algebraic error in the 
derivation of the thermal dispersion conductivity 
tensor. For this reason, equations (53)-(S) as well as 
(58). (59), and (61) of this paper differ from those 
presented in ref. [14] by a factor of 4. Consequently, 
the value of D’ = 0.04 reported in this paper differs 
from the value of D’ = 0.02 reported in ref. [ 141. 
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DISPERSION THERMIQUE DANS UN MILIEU POREUX 

RisumC-Le tenseur de conductivite de dispersion therrnique pour la convection dans un milieu poreux 
est obtenu a partir de la mbthode des volumes moyennant les deviations de vitesse et de temperature dans 
les pores. Ces deviations sont obtenues a partir de la solution externe pour I’&coulement amour dun 
arrangement dilut de spheres, avec analyse dimensionnelle. Une constante multiplicative (le tenseur de 
dispersivitt thermique) est introduite pour tenir compte de I’interaction des spheres. On considtre aussi 
les tcoulements rampants a faible nombre de Reynolds et I’ecoulement de couche limite et des sillages a 
grand nombre de Reynolds. On trouve que la dependance de la vitesse a la porosite dans le tenseur de 
conductivite de dispersion thermique est differente pour les ecoulements dans les milieux poreux selon que 
le nombre de Reynolds est eleve on faible. La valeur de la dispersivite thermique transversale pour un 
6coulement parallele a grand nombre de Reynolds est dtterminee en comparant les caracteristiques de 
transfert thermique predites aux resultats exptrimentaux connus pour la convection forcee de l’eau et de 

fair a travers des lits fixes chauds. 

THERMISCHE DISPERSION IN EINEM PORt)SEN MEDIUM 

Zusummenfassung-Der Tensor der WlrmeleitRihigkeit bei therm&her Dispersion wird fur Konvektion 
in einem poriisen Medium hergeleitet. Grundlage ist eine volumetrische Mittelwertsbildung der Temperatur- 
und Geschwindigkeitsschwankungen in den Poren. Diese Schwankungen ergeben sich aufgrund der lul3eren 
Losung fur eine Stromung iiber eine verdiinnte Anordnung von Kugeln unter Anwendung einer Dimen- 
sions- und GrciBenordnungsanalyse. Eine multiplikative Konstante (d. h. der Tensor der thermischen 
Dispersivitgt) wird eingefiihrt, urn die Wechselwirkung der Kugeln zu beriicksichtigen. Bei kleinen Rey- 
nolds-Zahlen wird die schleichende Striimung mit einbezogen, bei grogen Reynolds-Zahlen die Grenz- 
schichtstriimung und die Wirbelgebiete. Es zeigt sich, daI.3 die Einfliisse von Geschwindigkeit und PorositHt 
im Warmeleitfahigkeitstensor bei thermischer Dispersion unterschiedlich sind fiir hohe und Bir niedrige 
Reynolds-Zahlen der Striimung im poriisen Medium. Der Wert der quergerichteten thermischen Dis- 
persion wird fiir eine nahezu parallele Stromung bei hoher Reynolds-Zahl dadurch bestimmt, daB der 
berechnete Wgrmeiibergang mit vorhandenen experimentellen Ergebnissen fur erzwungene Strcimung von 

Wasser und Luft durch Festbettanordnungen verglichen wird. 

PACCEIIHME TEIUIA B I-IOPMCTOtl CPEAE 

AIIHOT~IW+_Ann HccAeAOBaHHR KOHWKUHH B nOpHCTOH CpeAe MMOAOM yCpeAHeHHB OTKJlOHeHHk CYO- 
pocrn H TeMnepaTypM HagAeH TeH3op TennonposorucccTH. GrKAoHeHHn CKOFH H TeMnepaTypM 
IlOJly’leHbl Ha OCHOBe BHemHerO pemeHHB AJtX nOTOKa HBA paCCpeAOTO’teHHOiI ynaKOBKOk Ctpep COB- 
MeCTHO C aHBJIH30M pa3MepHOCTeii H UIKaJl. j&TB yKeTa B3aHMOAeH~BHB C+p BBOAHTCK nOCTOBHHMfi 
MHOYHTeAb (T.e. AAB TeH3Opa TenJlOnpOBOAHOCTH). GTAeJlbHO paCCMaTpHBaKiTCK llOJl3)‘qHfi nOTOK npH 

HH3KHX 3HaHeHHnX HHcJTa PelHonbAca, a Tarzfie TeHeHHe B norpaHHHHoM cnoe H CAeAY npH BM~~KHK 
3Ha’teHHRX YHCAa PegHOJtbACa. HaiiAeHo, ‘tT0 3aBHCHMOCTb KOMllOHMT TeH3Opa TetlJtOnpOBOAHOCTH OT 
nOpO3HoCTH H CKOPOCTH PZUJlH’lHa AJlUIR Te’leHH% B IlOpHCTblX CpeAaX lIpH BblCOKHX H HH3KHX ‘JHB’ICHHRX 

HHcna PckHonbAca.LaueHHe nonepevfiofi TennonpoeomocTH ecnyvae novH napamenbHoroTeveHHn 

npH BMcoKHX wicnax PegHonbAca onpenenacrcn nocpencrsohi conocraeneHHn pacvrrHidx xapalrreptfc- 

THK T.%UlOIl~~HOCa C HMetOUlHMHCII 3KCIlCPHMeHTWIbHbIMH AaHHbIMH AJIK BbEHyWlCHHOii KOHBCKUHH 

BOAM H BO3AyXa WPe3 HaQtYTbIe )l’IaKOBaHHbte CAOH. 


